The role of reticular chemistry in the design of CO2 reduction catalysts.
نویسندگان
چکیده
The problem with current state-of-the-art catalysts for CO2 photo- or electroreduction is rooted in the notion that no single system can independently control, and thus optimize, the interplay between activity, selectivity and efficiency. At its core, reticular chemistry is recognized for its ability to control, with atomic precision, the chemical and structural features (activity and selectivity) as well as the output optoelectronic properties (efficiency) of porous, crystalline materials. The molecular building blocks that are in a reticular chemist's toolbox are chosen in such a way that the structures are rationally designed, framework chemistry is performed to integrate catalytically active components, and the manner in which these building blocks are connected endows the material with the desired optoelectronic properties. The fact that these aspects can be fine-tuned independently lends credence to the prospect of reticular chemistry contributing to the design of next-generation CO2 reduction catalysts.
منابع مشابه
Theoretical study of catalytic reduction of CO2 with H20 by BOC-MP method
Bond-Order Conservation-Morse Potential (BOC-MP) method is used to carry out the calculationon the CO2+ H20 system. One of the best catalysts for methanol synthesis in catalytic reductionof CO2 with H2O is Cu/ZnO/A1203 whose surface is supported by with some amount of Pd orGa. Reduction of CO2 with H20 on Cu will result in methanol formation; while on Ni will lead tomethane formation. In the me...
متن کاملEffect of K2O on the catalytic performance of Ni catalysts supported on nanocrystalline Al2O3 in CO2 reforming of methane
CO2 reforming of methane (CRM) over unpromoted and potassium promoted Ni/Al2O3 catalysts was studied. The catalysts were prepared by impregnation method and characterized by X-ray diffraction (XRD), N2 adsorption (BET), temperature programmed reduction (TPR), temperature programmed oxidation (TPO) and scanning electron microscope (SEM) techniques. The obtained results showed that addition of K2...
متن کاملComputational Study on Reduction Potential of [CoP4N2(OH2)2]2+ as a Super-Efficient Catalyst in Electrochemical Hydrogen Evolution
Hydrogen is considered as a unique choice for future world’s resources. The important parameter in the process of hydrogen production is the value of reduction potential for the used catalyst, in direct contact with consumed energy in process. The application of computational methods to design and modify molecular catalysts is highly regarded. This study sought to explore Density Functional...
متن کاملOptimization of Photocatalytic Reduction of Cr(VI) in Water with Nano ZnO/Todorokite as a Catalyst: Using Taguchi Experimental Design
In the present work, the solid-state dispersion method has been used to stabilize ZnOon Todorokite (TD). ZnO/TD catalysts have been characterized by SEM and XRD. Optimum process conditions were determined for the removal of Cr(VI) from water using the Taguchi fractional design method. Four controllable factors containing pH, photocatalyst amount, irradiation intensity, and <em...
متن کاملSpotlight: Phthalocyanine-based catalysts
Mohammad Dashteh was born in 1994 in Dashteh/ Hamedan, Iran. Having graduated in the field of Pure Chemistry (2016) from Bu-Ali Sina University, Hamedan, Iran, he continued his M.Sc. in 2018 in Organic Chemistry under the supervision of Professor Mohammad Ali Zolfigol. He is currently working towards his Ph.D. under the supervision of Professor Mohammad Ali Zolfigol and Professor Ardeshir Khaza...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nature materials
دوره 17 4 شماره
صفحات -
تاریخ انتشار 2018